10 Years of Probabilistic Querying - What Next?
نویسندگان
چکیده
Over the past decade, the two research areas of probabilistic databases and probabilistic programming have intensively studied the problem of making structured probabilistic inference scalable, but—so far—both areas developed almost independently of one another. While probabilistic databases have focused on describing tractable query classes based on the structure of query plans and data lineage, probabilistic programming has contributed sophisticated inference techniques based on knowledge compilation and lifted (first-order) inference. Both fields have developed their own variants of—both exact and approximate—top-k algorithms for query evaluation, and both investigate query optimization techniques known from SQL, Datalog, and Prolog, which all calls for a more intensive study of the commonalities and integration of the two fields. Moreover, we believe that natural-language processing and information extraction will remain a driving factor and in fact a longstanding challenge for developing expressive representation models which can be combined with structured probabilistic inference—also for the next decades to come.
منابع مشابه
Probabilistic View of Occurrence of Large Earthquakes in Iran
In this research seismicity parameters, repeat times and occurrence probability of large earthquakes are estimated for 35 seismic lineaments in Persian plateau and the surrounding area. 628 earthquakes of historical time and present century with MW>5.5 were used for further data analysis. A probabilistic model is used for forecasting future large earthquake occurrences in each chosen lineament....
متن کاملProbabilistic Graphical Models and their Role in Databases
Probabilistic graphical models provide a framework for compact representation and efficient reasoning about the joint probability distribution of several interdependent variables. This is a classical topic with roots in statistical physics. In recent years, spurred by several applications in unstructured data integration, sensor networks, image processing, bio-informatics, and code design, the ...
متن کاملExtracting and Querying Probabilistic Information in BayesStore
Extracting and Querying Probabilistic Information in BayesStore
متن کاملResearch on Querying Node Probability Method in Probabilistic XML Data Based on Possible World
In order to solve the low efficiency problem of directly querying single node probability in the set of all ordinary XML data obtained by enumerating possible world set of the corresponding probabilistic XML data, the method is presented that probabilistic XML data of possible world set is represented by semis-structured information unit. And it is modeled probabilistic XML data tree. Then the ...
متن کاملDeveloping a BIM-based Spatial Ontology for Semantic Querying of 3D Property Information
With the growing dominance of complex and multi-level urban structures, current cadastral systems, which are often developed based on 2D representations, are not capable of providing unambiguous spatial information about urban properties. Therefore, the concept of 3D cadastre is proposed to support 3D digital representation of land and properties and facilitate the communication of legal owners...
متن کامل